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Evaporation of Metals by High-Density 
(10 7 A" cm-2) Electrical Currents 1 

A. D.  Rakhel  2 

In the present work, the problem of time evolution of pressure and temperature 
profiles across a wire through which an electrical current with a density of the 
order of 107 A.cm -2 flows is solved. The correct boundary conditions for a 
metal surface are obtained for the case when this metal is rapidly evaporated as 
a result of high-power Joule heating. The pressure profile appears under these 
conditions due to pinch-effect and inertia of thermal expansion of the metal; the 
temperature profile arises because of intensive evaporation from the surface of 
the wire. The conditions under which a liquid metal is superheated are for- 
mulated. On the basis of the analysis of the experimental results on exploding 
wires, the conclusion is drawn that decay of the metastable state takes place 
near the binodal. It is shown that the distribution of fine dispersed vapor 
bubbles is strongly nonuniform across the wire and the process of expansion of 
the two-phase mixture is very similar to the motion of a wave. 

KEY WORDS: evaporation; exploding wires; high temperatures; liquid-vapor 
mixture; pulse-heating; superheated metal. 

1. I N T R O D U C T I O N  

The study of evaporation resulting from the passage of a high-density elec- 
trical current through a metal has a long history and is related to such 
phenomena as exploding wires [1]. The development of an adequate 
theory for this process is of great importance for the solution of many 
problems [2, 3]. In particular, it is of interest for research on metals in the 
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area of phase diagram, including the critical point of liquid-vapor phase 
transition, and in the field of metal-insulator transitions [4, 5]. 

Despite the long history of research on exploding wires, a generally 
accepted theory does not exist. The problem is that the nature of evapora- 
tion of metals under these conditions is not completely understood. In one 
of the earliest works devoted to the systematic research of exploding wires 
[6],  experimental dependences (resistance of wire versus enthalpy)were 
interpreted to be the result of the motion of an evaporation wave, sepa- 
rating the liquid metal from the liquid-vapor mixture which was assumed 
to be electrically not conducting. The wave starts at the surface of the wire 
at the beginning of explosion, i.e., when the resistance as a function of the 
enthalpy begins to increase rapidly. In Ref. 6 it was established that the 
dependence of the speed of the evaporation wave on temperature is qualita- 
tively very similar to that of sound speed in the two-phase mixture on the 
binodal. Nevertheless, the investigator [7] postulated, based on the idea of 
shock regime of superheating [ 8 ], maximum superheating of a metal and 
phase decay on the spinodal. In so doing, isobaric expansion of the metal 
was assumed. 

In investigations devoted to the numerical simulation of exploding 
wires [9-11],  a one-dimensional magnetohydrodynamics model was used; 
evaporation from the surface of the metal was not taken into account. As 
a result, the model did not describe the formation of a temperature profile 
near the surface and real superheating of the metal, caused by evaporation 
[12]. 

2. ONE-DIMENSIONAL MAGNETOHYDRODYNAMICS MODEL 

We consider the passage of an electrical current pulse through a thin 
rectilinear metal wire, placed in vacuum. Let the length of the wire l be 
much larger than its radius a and t a characteristic time t ~ l/cs (cs is the 
sound speed). Then the particles of the material move exclusively in the 
radial direction, and distribution of current and electromagnetic field can 
be obtained in the approach of thin wire [ 13]: the intensity of magnetic 
field H has only an azimuthal component, and the density of current j has 
only a component along the axis of the wire. It should be noted that 
applicability of the one-dimensional model for the regimes with the charac- 
teristic current density of the order of 10 7 A .  c m  - 2  and higher is confirmed 
by many experiments [ 14-18]. 

In a cylindrical coordinate system, axis z of which is directed along the 
axis of the wire, laws of conservation of mass, momentum, and energy can 
be written as 
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According to Eq. (1), density p varies only due to the radial motion of 
parts of the wire with the speed v; r is the radius-vector. The Euler equa- 
tion, Eq. (2), contains the Lorentz force, having in this case only a radial 
component (cr is the speed of light in vacuum). The law of conservation of 
energy, Eq. (3), is rewritten for the specific entropy s; here E is the electri- 
cal field strength, T is the temperature, and x is the thermal conductivity 
coefficient. 

We assume that the skin effect is of no importance and therefore the 
electrical field is a function only of time E=E(t) [ 19]. Then the Maxwell 
equations are reduced to the single equation: 

1 0 4n 
i-" a~ -Z" (rH) = -~- j (4) 

The current density obeys Ohm's law: j =  aE (a is the electrical conduc- 
tivity). 

We are interested in the region of the phase diagram of a metal where 
temperature is at least below the critical temperature of the metal. In this 
range of temperature, conductivity of the vapor arising due to evaporation 
from the surface of a wire can be neglected. In this case, the problem of 
motion of the vapor can be solved separately from that one of condensed 
matter; the solution of the problem is necessary to obtain the boundary 
conditions on the surface of the wire. 

3. BOUNDARY CONDITIONS 

As it is well-known, near the surface of an evaporating body a thin 
vapor layer is formed, where the local thermodynamic equilibrium is 
infringed. The size of this layer is of the order of the mean free path of the 
molecules in the vapor (Knudsen layer). 

We designate a metal by index 1 and vapor by index 2 and write the 
laws of conservation of mass, momentum, and energy on a plane phase 
boundary as follows: 

840/17/5-3 
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D i(01 -- Os) = P2(1)2 --/)s) (5) 

Pl -- P2 = P2(t)2 -- Vs) 2 -- Pl(t~l -- t)s) 2 (6) 

q=pl ( v t - - v~ ) [w2- -w ,  +(v2--v,)2/2--(vl--v~)2/2] (7) 

where v~ is the speed of the boundary in the laboratory flame of reference, 
q = --h-(OT/Ox) is the heat flow in the flame of reference which is in rest 
in relation to the boundary, and w is the specific enthalpy; the x-axis is 
directed perpendicular to the boundary and the metal occupies the region 
x > 0 .  

In Ref. 20, the gas-kinetics problem of evaporation of a metal in 
vacuum was considered and equations relating the thermodynamics quan- 
tities for the vapor near the surface (but beyond the limits of the Knudsen 
layer and a condensation jump) to the temperature of the surface were 
obtained: 

T2 =0.79T, ,  p2=O.37P~t(Ti), t~2 = 0.55Cs2(r2) (8)  

where Pst(T) is the saturation vapor pressure, and Cs2 is the sound speed 
in the vapor. 

Using Eqs. (8), we obtain the following equations from Eqs. (5) and 
(7), which will play the role of the boundary conditions on the surface of 
the metal: 

(Vl - vs) Pl = --0.30P~t(T~)[It/(RT~)] ~/2 (9) 

Pl = 0.56P~,( T I) (10) 

hl ~ = 0.302er(T,) Pst( T1 )/(ltRT,) 1/2 (11) 

where R is the molar gas constant, It is the molar mass, and 2of(T)= 
2 ( T ) -  0.325RT (2 is the molar latent heat of evaporation). These relations 
contain only the linear contributions of the ratio of density of the vapor to 
density of the liquid. The approach suggests a small difference between the 
inner energy and the enthalpy of the condensed matter. It is also assumed 
that vapor is described by the equation of state of ideal gas. 

For the difference between enthalpies of the liquid and the vapor, one 
can write 

w2(7"_,) - w,(Tl) = 2(T,) -- 0.525RT1/It 
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the dependence of 2 on T is given by 

2=2o+(Cp2-Cpl)  T (12) 

where Cp2 = 5R/2 and 2o is the molar heat of evaporation at T =  0 K; we 
suppose that the molar heat capacity of a liquid metal Cp2 is also a con- 
stant [4]. 

The temperature dependence of the saturation vapor pressure has the 
form 

P~t(T) = A exp[ -2o/(RT)] (13) 

where A is a constant [21, 22]. 

4. PRESSURE A N D  TEMPERATURE PROFILES 

Let us seek the solution of Eqs. (1)-(3) with a slightly nonuniform 
density profile: 

p(r, t ) = p h ( t ) + p ' ( r ,  t) 

where IP'[ ~ P  (to be short, here and below the index 1 is dropped). 
Equation (1), after substitution of such a profile, is easily integrated. 

As a result, for the speed of a particle of material, we obtain 

r d In ph 
V = (14) 

2 dt 

Using Eq. (14), from Eq. (2) the following equation for the pressure profile 
can be derived: 

1 ~" p . [ l ( d l n p . ' ~  2 d21n_ph] 
p=ps+~. j , ,  j H d r + - - ~ L ~ \ - - - ~ j  dt 2 j (aZ-r  2) (15) 

where Ps is the pressure on the surface of the wire. 
As one can see, the contribution to the pressure by the magnetic field 

~',! jHdr/er ~ u A (UA = H/x/ / -~  is the Alfven speed), and the inertial con- 
tribution is of the order of pa2(~p dT/dt) 2, where ctp is the coefficient of 
thermal expansion. Since p' ~p/c~, the inequality ]p'] ~ p is satisfied when 
u~ ~ c~, and (a/tT) 2 ~ C~., where tv is the characteristic rise time of tem- 
perature. 

Next, we discuss the temperature profile. The estimations show that 
the contribution of thermal expansion at T <  0.9To (T¢ is the critical tem- 
perature) is relatively small and the size of a layer where the temperature 
has an appreciable gradient due to evaporation of the metal from the 
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surface of the wire is much smaller than a. Hence, the equation for the tem- 
perature profile can be presented for a flat surface. 

Based on these remarks, and from Eq. (3), one may write 

OT 02T OT l taE 2 
(16) 

where Z--Kfl/(pCp) is the thermal diffusivity. The frame of reference in rest 
in relation to the surface is used. 

We also represent the temperature profile in the form 

T(x, t) = Th(t) -- T'(x,  t) 

(I T'[ ~ T); the limits of applicability of such an approach are established 
below. Equation (16) can be brought to a system, consisting of a uniform 
equation for T': 

OT' OZT ' OT' 
Ot =Z(Th) ~X 2 +(v~-v)~Ox 

with the boundary condition, Eq. (11), and the ordinary differential equa- 
tion for Th: 

dTh ., 
dt = J -fl/( 6rpCp) 

We consider the so-called fast regimes of exploding wires when the 
total current through the sample I on the stage from the end of melting of 
the sample up to the beginning of explosion is changed relatively little, i.e., 
we can assume that I =  constant. In this case, the equation for Th can be 
easily integrated. 

The formal solution of the equation for T' can be obtained by means 
of the Green functions method [ 23 ]. Taking into account the temperature 
dependence of Z, the method gives, for T's(t ) =-T'(a, t) 

I~ ~ef(t') vs(t') dt' 
, _ - l  exp[ - x~ ( t ,  t')/4~(t, t')] ~ t') T~ - p C p  (17) 

where x~=~',, [vs( t , ) - -v]  dr1, ~=J' "z(t,) dtl, and v~ ( t )=vs ( t ) - v  is the 
speed of evaporation. 

Temperature T' in a thin layer near the surface can be represented 
by the expansion T'(x,  t),,~ T'~+(~T'JOx)x.  As the boundary condition, 
Eq. (11), relates the gradient of temperature on the surface with the 
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temperature of the surface, for the description of the profile we need only 
to obtain the dependence T's(t), where the index s denotes surface quan- 
tities. 

The estimations show that x~ ~ 4~ and it is possible to neglect the dis- 
placement of the surface in Eq. (17). It is convenient to pass in this equa- 
tion from the variable t to T,. After this transition, Eq. (17) takes the form 

with 

B =  

" exp{ - 1 / [ r ' - `9(r ' ) ]  } , 

,9=B fo E z   --VTY ',2d  

voR ~ / t v Z b l ( n x . , )  Pm Cp Tmo" m Zpm 
Cp ' tT = "~ , Jm -- 

J ~ p  na?~po 

(18) 

index m denotes the quantities in the liquid phase at the melting point. We 
have introduced the following dimensionless variables: z=  ThR/2o,  ,9= 

T'sR/2o (% = TbR/2o,  where Tb is the boiling temperature at atmospheric 
pressure). In Eq. (18) we have neglected the temperature dependence of 2. 
For the speed of evaporation we make use of the expression 

V s = Vo(TblT)  112 exp[ - 2 o / ( R T ) ]  

which results directly from Eq. (9); v0 =0.3A/(pm ~ / z ) .  
The nonlinear integral equation, Eq. (18), completely defines the func- 

tion `9(r). We consider first the case 9̀ ~ r 2. Expanding the right-hand part 
of Eq. (18) in a power series on ,9, in linear approximation on ,9/r 2, it 
follows that 

f2 ,9(r) ~- B exp(-- 1/z') 1 - -  `9 / ' t "  2 ~., (Z. ~..t) i/2 d~' (19) 

It should be noted that r obeys the inequality r ,~ 1. For this reason, the 
terms proportional to `9/r were dropped. We solve Eq. (19) by the step-by- 
step method, and its solution is given by 

,9 /r  2 = 1#(1 - , f l y  d + . . .  ) (20) 

with r/= `9t I)/,[.2, and 

`9.1 = Be-,/2.Ko[ l / (2r)  ]ix/,' 7 
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where Ko(z) is the McDonald function. The series converges at all q, and 
its sum S(q)<  1. The function Ko(z) can be presented for z>> 1 by 
Ko(z) ~ [ ~/(2z) ] I/_, exp( - z). Hence, for 0 cl~, we obtain 

0 ~'~ ~ x//-~ B exp( - l /r)  (21) 

The error, arising due to breakdown of the expansion of Eq. (18), 
becomes considerable at q ~ 1. The estimations show that it is necessary to 
have a formula for these values also. To obtain such a formula one has first 
to take into account the dependence of the exponent e x p [ - 1 / ( r - 0 ( r ) ) ]  
on r more correctly. Let us pass in Eq. (18) to the variable rp = r - 0 ( r ) :  

B I ~° exp{ - 1/rp')(ctr/drp') d~o' 
0 J0 (22) 

We again make use of the step-by-step method. For the first approximation 
we take r = c,o and dr/drp = 1 (0 ~ r). As a result, we have 

0 = Be -'/2¢Ko[ 1/(2~0)]/x/~ 

When 2¢p ~ 1, we can write 

O ~ x /~  B exp{ - 1/[r -- 0(r)] } (23) 

As one can see, the expression turns into Eq. (21) at 9 ~ r 2. The next term 
given by the step-by-step method can be found if one uses the functions 
r(cp) and dr/dq~ in Eq. (22) according to Eq. (23). It may be shown that the 
term differs from those given by Eq. (23) by a factor of the order of one, 
weakly depending on T. 

Next we determine the thickness of the layer near the surface inside 
which the temperature has a marked gradient. We define the thickness 6-r 
of the layer by 6 x =  T'J(~TJOx). After substitution in the formula the 
expression for T'~ according to Eq. (23) and OTs/Ox according to Eq. (11), 
we obtain 

61- ~ tx/~xy~ (24) 

Therefore the limit of applicability of the approach used for the calculation 
of the temperature profile is expressed by t,,//t~Zrb ~a .  Besides that, the 
requirement T' s ,~ T h leads to 

, /~ B¢~0 exp(1/~o) (25) 
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Fig. 1. Reduced temperature cp as a function of r. The 
curves present the dependences at various values of the 
electrical current density j for AI. 

In Fig. 1, the temperature on the surface q~ as a function of the tem- 
perature far from the surface r for several values of the electric current 
density j is shown. 

5. C O N D I T I O N  OF S U P E R H E A T I N G  

As follows from Eq. (10), a metal near its surface is superheated at all 
temperatures; Ps < P~t(T~). The value of relative superheating 5T~/Ts = 
ITs-T~,(P)]/Ts, is given by 

5T~/T~ = 0.58q0/(1 4- 0.58q~) 

The function monotonously  increases and its value at Ts = Tc for A1 is 
equal to 0.11. The parameters  of the critical point we take according to 
Ref. 24 (for A1 Tc = 8000 K). 

Let us find the conditions under which a metal is superheated far from 
the surface. When calculating the thickness of the superheated layer 5, we 
assume first that 5 ~ ST. We expand the equality P(& t) = P~t( T(5, t)) in a 
Taylor  series in 5. In the linear approximation,  we obtain 

5 ~ 0.44Pst( Ts)/{ (OPs/Ox) - [dP~t( Ts)/dT](OTs/Ox)} (26) 



1020 Rakhel 

As a result of Eq. (24), 6 increases infinitely when 

OP~/Ox ~ [ P~,( Ts)/dT ] OTJOx 

We introduce the characteristic temperature T* at which the 
denominator in Eq. (26) becomes zero. As one can see, till T<  T* the 
superheating of the metal is maximum near the surface. As soon as T >  T*, 
the maximum is reached in the volume of the metal. Thus, the temperature 
T* characterizes that value of temperature at which superheating of metal 
in volume becomes appreciable (greater than on the surface) and, in addi- 
tion, the size of the superheated layer becomes greater than fiT. We find 
the pressure gradient on the surface by differentiating Eq. (15) and the 
temperature gradient from Eqs. (23) and (11). As a result, we have the 
following equation for the temperature ~o*= RT.~*/2o: 

exp( - 1/~o*) 
(~o.)5/4 [2¢f(cp*)]l/2~Dg (27) 

where g = j ~/~, and D is a constant depending only on the thermophysical 
parameters of a metal. The temperature far from the surface r* corre- 
sponding to q~* can be determined by r* =q~* +8(cp*). When deriving 
Eq. (27), we have neglected the temperature dependences of x and p. 
Besides that, in Eq. (15) we have neglected the inertia contribution, which 
is small up to j ~ 108 A. cm -2 

After reaching the temperature T*, the further evolution of the tem- 
perature and pressure profiles depends on the kinetics of the decay of the 
metastable state. In the case of homogeneous nucleation, the metal is 
strongly superheated and decay takes place near the spinodal. However, at 
typical pressures for the fast regimes of exploding wires, P ~ 102-103 bar, 
the temperature on the spinodal Tsp(P) is close to T¢, while the tem- 
perature, corresponding to the beginning of explosion, can achieve values 
Te>~O.5Tc. So low values of Te, in our opinion, indicate heterogeneous 
nucleation under conditions created by exploding wires. 

Nevertheless, heterogeneous nucleation cannot happen in an appre- 
ciable volume suddenly after reaching temperature T*. Indeed, the speed of 
sound Crux in a liquid metal with finely dispersed vapor bubbles distributed 
in it at temperature T =  Tb is of the order of 10 cm.s  -1, i.e., it is a very 
small value. Therefore, the bubbles arise only in a layer of the thickness of 
the order of ~ Crux dr. We introduce the characteristic temperature Tv, at 
which I ;  C,,x dt = a. Performing the integration, we obtain 

1 + ~'(rv - rm) ~ exp( - 1/rv) ~ F g  2 (28) 
1 "1-/~'(~'v - -  Tin) 
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where F is a constant depending only on the thermophysical parameters of 
a metal. The sound speed in the two-phase mixture (at infinitesimal mass 
fraction of vapor) is equal to [ 13] 

Cmx (T) = Psi(T) 2o/[ pRT x/( Cp T/l,) ] 

We have used the following temperature dependences of the conductivity 
and density for the liquid metal: 

a=aml[ l+ f l (T - -Tm)] ,  p=pml[l+o~(T--Tm)] (29) 

where fl' = fl2o/R, o~' = a2o/R (Tm is the melting temperature). 
Thus, there are two cases: T* > Tv and T* < Tv. The first is charac- 

terized by a relatively uniform expansion of the wire. In the second case, 
expansion is nonuniform. At first, the vapor bubbles arise in a thin layer 
near the surfaces, and only after reaching the temperature Tv (do) bubbles 
arise near the axis of the wire. It is of interest to find out what situation 
takes place for the typical regimes of exploding wires. 

In Fig. 2, dependences of characteristic temperatures rv and r* on the 
parameter j,,//-a for A1, W, and Pb are presented. From Fig. 2, it may be 
seen that for the regimes presenting a practical interest (g~0.1-10),  the 
situation r * <  rv is realized. The parameters used in these calculations are 
listed in Tables I and II. 

0 .25  
........ ' ........ ' '  ' i ' " ' " '  '/ '" '" '/ ....... ' ....... ,' I I :  

0 . 2 0  1," 1/ 1 i l:- 
/ / ' l j I  I:_ / w I 

P b /  A / 

t- 0 . 1 5  " / 1 1 / /  2 '","~'""~2 ,,' / ,,' / 
,,,; / ,," I - 

0 . 1 0  "'" / ."" / / "  / . /  / 

0.05 ~ ~ I  I I I t IIIIIIi 
10-4  10 -~ 10 -2  1 0 - '  1 10 10 2 

g, MA • c m  -3/2 

Fig. 2. Dependences of rv (curves with index l) and 
r* (curves with index 2) versus the parameter g for AI 
( ), W (---),  and Pb ( . . . .  ). 
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Table I. Parameters for Some Selected Metals ° 

20 T b T m Cp O. m I 
(kJ .mo1-1)  (103K) (103K) ( J . m o l - I . K  - I )  ( i tD.cm) 

AI 113 2.79 0.93 32.4 26.1 
Cu 338 2.82 1.36 30.5 21.5 
W 838 5.95 3.65 47.8 146 
Pb 197 2.00 0.60 33.2 95.0 ' 

20 is the molar heat of evaporation at T = 0 K; T b is the boiling temperature at atmospheric 
pressure; Tm is the melting temperature at atmospheric pressure; C o is the molar heat 
capacity of liquid metal; a m is the electrical conductivity of liquid metal at the melting tem- 
perature. 

In Fig. 3, the dependences r*(g) and rv(g) for Cu are presented with 
marked experimental valued of the temperature re = RTe/2o. As one can 
see, r e is close to r* and is always lower than the temperature on the 
spinodal RTsp/2O "~ 0.21 (at pressure P ~ 1 0 2 - 1 0 3  bar), which confirms the 
conclusion regarding heterogeneous nucleation and small superheating of 
metals under conditions created by exploding wires. The critical tem- 
perature for Cu according to [24] is equal to 8390 K. 

The temperature r* increases with increasing g and can reach even the 
critical temperature. The noted situation is in good agreement with the 
well-known fact of a rise in energy imparted to the wire at the beginning 
of explosion with an increase in current density [2, 3]. At large values of 
g (g ~ I0) superheating and, therefore, the generation of vapor bubbles are 
impossible. 

Table 1I. Parameters for Some Selected Metals a 

(cm 2 .s - I  ) (GPa)  (10 -4 K -I  ) (10 -4 K -~ ) 

AI 0.32 96.4 4.5 1.4 
Cu 0.40 144 3.8 1.0 
W 0.14 3520 0.0 0.93 
Pb 0.091 12.2 3.2 1.3 

Xm is the thermal diffusivity of liquid metal at the melting temperature; A is the coefficient 
in Eq. (13) for the temperature dependence of the saturation vapor pressure; fl is the coef- 
ficient in Eq. (29) for the temperature dependence of electrical conductivity; ct is the thermal 
expansion coefficient of liquid metal at the melting temperature. 
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Fig. 3. Temperature rv(1 ) and r*(2) as functions ofg  
for Cu. The symbols present the experimental values of 
r~: circle [15]; asterisk [16]; squares [25]. 

6. CONCLUSIONS 

Superheating of a metal for typical regimes of exploding wires 
(j,--10 7 A .cm -2) arises due to intensive evaporation from the surface of 
the wire. The values of superheating are relatively small; the decay of the 
metastable state takes place near the binodal. The distribution of the vapor 
bubbles across the wire is strongly nonuniform. The process of expansion 
of the two-phase mixture is very similar to the motion of a wave. The 
regimes, distinguished by a large value of the parameter j x/~, exist, when 
superheating and generation of vapor bubbles are impossible. 

ACKNOWLEDGMENT 

This research was supported 
Investigations Grant 95-02-05057-a. 

by Russian Fund of Fundamental 

REFERENCES 

I. E. Nairne, Phil. Trans. Roy. Soc. 64:79 (1774). 
2. W. G. Chace, Phys. Today 17(8):19 (1964). 
3. V. A. Burtsev, N. V. Kalinin, and A. V. Luchinski, Exploding Wires Phenomenon and Its 

Application for High-Power Pulsed Generators (Energoatomizdat, Moscow, 1990). 



1024 Rakhel 

4. G. R. Gathers, Rep. Prog. Phys. 49:341 (1986). 
5. G. Pottlacher, hlt. J. Thermophys. 11(4):719 (1990). 
6. F. Benett, in Physics of High Energy Density, P. Caldirola and H. Knoepfel, eds. 

(Academic Press, New York and London, 1971), Part 7. 
7. M. M. Martynyuk, bzt. J. Thermophys. 14:457 (1993). 
8. V. P. Skripov, Metastable Liquids (Wiley, New York, 1974). 
9. Yu. D. Bakulin, V. F. Kuropatenko, and A. V. Luchinskii. Zh. Teklm. Fiz. 46:1963 (1976). 

10. G. S. Romanov and A. S. Smetannikov, Zh. Tekhn. Fiz. 51:678 (1981). 
11. V. S. Vorob'ev and A. D. Rakhel, Teplofiz. Vysokikh Temp. 28:18 (1990). 
12. V. L. Budovich, A. A. Samokhin, and A. B. Uspenskii, Zh. Tekhn. Fiz. 52:381 (1982). 
13. L. D. Landau and E. M. Lifshits, The Electrodynamics of Continuous Media (Nauka, 

Moscow, 1982). 
14. N. V. Grevtsev, V. D. Solotukhin, Yu, M. Kashurnikov, V. A. Letyagin, and B. I. 

Makhorin, Teplofi:. l,'ysokikh Temp. 15:362(1977). 
15. V. M. Kul'gavchuk and G. A. Novoskol'tseva, Zh. Tekhn. Fiz. 36:549 (1966). 
16. F. D. Bennett, H. S. Burden, and D. D. Shear, J. Appl. Phys. 45:3429 (1974). 
17. M. L. Lev, A. M. Mirazbekov, Yu. I. Ostrovski, and B. P. Peregud, Pis. Zh. Tekhn. Fiz. 

9( 14):840 (1983). 
18. D. H. Kalantar and D. A. Hammer, Phys. Rev. Let. 71(23):3806 (1993). 
19. A. D. Rakhel, Theoretical hwestigation of Some Regimes of Exploding Wires, Ph.D. disser- 

tation (Institute for High Temperatures, Moscow, 1992). 
20. S. I. Anisimov, Ya. A. hnas, G. S. Romanov, and Yu. V. Khodyko, Effect of High- 

Powered Irradiation on Metals (Nauka, Moscow, 1970). 
21. L. D. Landau and E. M. Lifshits, The Statistical Physics, Part 1 (Nauka, Moscow, 1976). 
22. K. Hornung, J. Appl. Phys. 46(6):2548 (1975). 
23. L. D. Landau and E. M. Lifshits, The Hydrodynamics (Nauka, Moscow, 1986). 
24. V. E. Fortov, A. N. Dremin, and A. A. Leont'ev, Teplofiz. Vysokikh Temp. 13(5):1072 

(1975). 
25. V. V. Ivanov, Teplofiz. Vysokikh Temp. 21:146 (1983). 


